A hyperphosphorylated form of RNA polymerase II is the major interphase antigen of the phosphoprotein antibody MPM-2 and interacts with the peptidyl-prolyl isomerase Pin1.
نویسندگان
چکیده
The monoclonal antibody MPM-2 recognizes a subset of M phase phosphoproteins in a phosphorylation-dependent manner. It is believed that phosphorylation at MPM-2 antigenic sites could regulate mitotic events since most of the MPM-2 antigens identified to date have M phase functions. In addition, many of these proteins are substrates of the mitotic regulator Pin1, a peptidyl-prolyl isomerase which is present throughout the cell cycle and which is thought to alter its mitotic targets by changing their conformation. In interphase cells, most MPM-2 reactivity is confined to nuclear speckles. We report here that a hyperphosphorylated form of the RNA polymerase II largest subunit is the major MPM-2 interphase antigen. These findings were made possible by the availability of another monoclonal antibody, CC-3, that was previously used to identify a 255 kDa nuclear matrix protein associated with spliceosomal components as a hyperphosphorylated form of the RNA polymerase II largest subunit. MPM-2 recognizes a phosphoepitope of the large subunit that becomes hyperphosphorylated upon heat shock in contrast to the phosphoepitope defined by CC-3, whose reactivity is diminished by the heat treatment. Therefore, these two antibodies may discriminate between distinct functional forms of RNA polymerase II. We also show that RNA polymerase II large subunit interacts with Pin1 in HeLa cells. Pin1 may thus regulate transcriptional and post-transcriptional events by catalyzing phosphorylation-dependent conformational changes of the large RNA polymerase II subunit.
منابع مشابه
The essential mitotic peptidyl-prolyl isomerase Pin1 binds and regulates mitosis-specific phosphoproteins.
Phosphorylation of mitotic proteins on the Ser/Thr-Pro motifs has been shown to play an important role in regulating mitotic progression. Pin1 is a novel essential peptidyl-prolyl isomerase (PPIase) that inhibits entry into mitosis and is also required for proper progression through mitosis, but its substrate(s) and function(s) remain to be determined. Here we report that in both human cells an...
متن کاملThe mitotic peptidyl-prolyl isomerase, Pin1, interacts with Cdc25 and Plx1.
The cis/trans peptidyl-prolyl isomerase, Pin1, is a regulator of mitosis that is well conserved from yeast to man. Here we demonstrate that depletion of Pin1-binding proteins from Xenopus egg extracts results in hyperphosphorylation and inactivation of the key mitotic regulator, Cdc2/cyclin B. We show biochemically that this phenotype is a consequence of Pin1 interaction with critical upstream ...
متن کاملPin1 interacts with the Epstein-Barr virus DNA polymerase catalytic subunit and regulates viral DNA replication.
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) protein is known as a regulator which recognizes phosphorylated Ser/Thr-Pro motifs and increases the rate of cis and trans amide isomer interconversion, thereby altering the conformation of its substrates. We found that Pin1 knockdown using short hairpin RNA (shRNA) technology resulted in strong suppression of productive Epstein-Barr...
متن کاملProteasomal degradation of human peptidyl prolyl isomerase pin1-pointing phospho Bcl2 toward dephosphorylation.
Microtubule inhibitor-induced Bcl2 phosphorylation is detrimental to its antiapoptotic function. Phosphorylation of Bcl2 predominantly occurs on two serine residues (70 and 87) in cells arrested at G2-M phase by microtubule disarraying agents. Phospho Bcl2 can associate with a cis-trans peptidyl prolyl isomerase, Pin1. Pin1 and its homologues are known to target the proline residue carboxyl ter...
متن کاملIdentification of a novel kinesin-related protein, KRMP1, as a target for mitotic peptidyl-prolyl isomerase Pin1.
Mitosis utilizes a number of kinesin-related proteins (KRPs). Here we report the identification of a novel KRP termed KRMP1, which has a deduced 1780-amino acid sequence composed of ternary domains. The amino-terminal head domain is most similar to the kinesin motor domain of the MKLP-1 subfamily and has an intrinsic ATPase activity that is diminished by substituting the consensus Lys-168 with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 15) شماره
صفحات -
تاریخ انتشار 1999